so m+1 has to be a perfect square. So there is no Shoesmith labelling
for K7 or Kj;. Now K3 (= C;) does have a Shoesmith labelling. But
what about K5 ?

Case (ii) n = 4m. Here Y4 n(nt+1) = 2m(4m+1) and we require a+b =
4m and ab+b=4m?+m. Thus we require (a+1)(4m-a) = 4m* +m,
ie.

a*—(4m—1)a+4m*—-3m = 0.
The discriminant is 4m+1, so we require 4m+1 to be a perfect square.
So no Shoesmith labelling exists for n =4 or 12 or 16 or 20. Now
Shoesmith has shown recently that a there is a labelling for Kg : label
the vertices by 1,3,7,11,13,23,28 and 32. But what about K4 ?

Case (i) n=4m + 1. Here an(n+1) = 2(4m* +3m) +1 and we require
a+b=4m+1 and ab+b=4m*+3m+1.

This leads to (a—2m)? = m, so m must be a perfect square. For m=1

(n=5) there are solutions with a=1 and with a=3, but there are no

labellings for K or K3 . What about K7 ? :

Case (iv) n=4m+2. Here %2 n(nt+1) =2(4m*+ 5m +1) +1, so we
require

atb=4m+2 and ab+b=4m*+ Sm+2,
This leads to a* — (4m+1) a + 4m* + m = 0, and, as in case (ii), this
requires 4m+1 (= n—1) to be a perfect square. So no Shoesmith
labelling exists for n = 6 or 14 or 18 or 22. What about K¢ ? This is
the smallest unknown case.
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AssTracT. It is shown that the ratio of the secure-domination
number of a graph to its order can be bounded away from
% in families including arbitrarily large connected graphs.
Infinitely many trees and infinitely many connected graphs

4

of girth 6 are found in which the ratio is 7

1. Introduction

All graphs in this note will be finite and simple. The vertex set of a
graph G will be denoted V(G), and its edge set will be denoted E(G).
An edge incident to u,v € V(G),u # v, may be denoted wv or vu. If
wv € E(G), then w and v are adjacent in G. If v € V(@), its open and closed
neighbor sets in G are, respectively, No(v) = {u € V(Q) | w € E(G)}
and Ng[v] = Ng(v) U {v}. When the graph of reference is clear from the
context, the subscript in this notation may be omitted. For instance, if
S C V(G) we can define N(S) = ULGJSN('U) and N[S] = N(S)u S.

Suppose that § # S C V(G). We summarize definitions originally given

in [2]: :
In an attack on S, each vertex in N(S)\S attacks exactly one of its neigh-
bors in S; in a defense of S, each vertex in S defends either itself or one
of its neighbors in S; given an attack on S, and a defense of S, the defense
defends against (or thwarts, or defeats) the attack if and only if each v € S
has at least as many defenders as attackers of S. If for every attack on S
there is a defense of S against that attack, then S is said to be secure (in
G).
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One easy way to see that a set S C V(G) is not secure is to locate v € S
with more potential attackers than potential defenders:

IN(\S] > [N[v] N S].

For, supposing this inequality holds, if we let every vertex of N(v)\S at-
tack v, then however the attacks on S of the other vertices of N(S)\S are
assigned, and however the defensive capabilities in S are deployed, v will
have more attackers than defenders. This observation is a special case of
a more general one: if, for some X C S, |[N(X)\S| > |N[X]N S|, then S
is not secure. The fundamental theorem of secure-set theory ([2] and [4])
asserts that the converse holds: if |N(X)\S| <| N[X] N S| for all X C S,
then S is secure.

S C V(@) is dominating in G if and only if N[S] = V(G). If Sis
both dominating and secure, we will say that S is a secure-dominating
set. The secure-domination number of G is 7,(G) = min{|S| : § C
V(G) is a secure-dominating
set in G}; vs(G) is well-defined because V(G) is clearly secure-dominating
in G.

Since a secure-dominating set is a set which is both secure and domi-
nating, there is no grammatical nor logical reason for the hyphen between
“secure” and “dominating”. But there is a historical/cultural reason for the
hyphen, which we are grateful to the referee for alerting us to. Recently
there has been an eruption of interest in “secure domination”, meaning
something quite different from our “secure-domination”. A “secure domi-
nating set” is a dominating set which is not necessarily secure in the sense
defined here; rather, the set’s property of being a dominating set is “se-
cure” in that the set can be perturbed in certain ways, with the result
guaranteed to be dominating. See [3]. The reader is also warned that
the common notation for the “secure domination number” of a graph G
(guess the definition!) is v,(G), the same notation as that used here for
the secure-domination number of G. For now, we will just take note and
endure the ambiguity.

As noted in [5], if § € V(@) is dominating and |S| < J—‘%@l, then

IN(S\S| = V(G|
= V(&) -5
v
2
> |S|

V(G
Therefore, S cannot be secure. Consequently, v,(G) > [L_%.ll]

114

In {5] 7,(@) is determined for all graphs G among the “usual suspects” —
paths, cycles, cubes, complete multipartite graphs, and the Petersen graph-
and it turns out that v,(G) = fl‘_’%@l] for all such G except G =C,, n=
2 mod 4, n > 6. In these cases 7,(G) = § + 1. Another result in (5] and

recent unpublished work [1] shows that v, = fngﬂ] for a great many

graphs G. Which raises the question: How much larger than fll’_(zﬁll] can
vs(G) be? To pose the question more precisely, how much larger than
% can IjVi((CGT))I be? This ratio is % for G € { P4, K3,Cs} (Ps is the path
on 3 vertices, K3 is the complete graph on 3 vertices, and Cg the cycle
on 6 vertices). Taking disjoint unijons (or “sums”) of these graphs gives
arbitrarily large graphs with the same ratio, but this is a very unsatisfying

observation which leads to the question: Is there a number n > % such

that for infinitely many connected graphs G, ﬂ,—“{—g)l, > n, and, if so, what
is the largest (if any) n that will satisfy this statement? We could call
the largest 7 (or, the supremum of all the 7 that satisfy the statement)

lim sup —'{—;ﬁ—g—l, borrowing a term from analysis.
Gconnected| @)
The class of connected graphs can be replaced by other classes. By

previous remarks we have, trivially,

, 1(G) 2
lim su > -
G simpie V()] = 3
From [5] it can be concluded that
1(G) 1

B o) T 2
for many infinite classes G of graphs — not only paths, cycles, and complete
multipartite graphs, but also any infinite class G contained in the union
of these classes. Recent work [1] extends this result to grids (Cartesian
products of paths), cylindrical grids (paths and cycles), and toroidal grids
(cycles and cycles).
In the main results of this note, in the next section, we show that

. 7s(G) _ 4
lim su >
Geo V(O] = 7

for G € {{trees}, {connected graphs with girth 6} }.

2. Results

Let G + H denote the disjoint union, or sum, of two graphs G and H.
Let G+ G+ --- + G be denoted by mG.
| NS

m—times
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FIGURE 1. G3 and G4, with minimum secure-dominating sets.

For each positive integer n, let G,, denote the full binary tree with 271
leafs (terminal nodes), each a distance n — 1 in G,, from the root of the
tree (which, for n > 1, is the only vertex of degree 2 in the graph). For
n > 1, G, is formed by making the root of G,, adjacent to the roots of
two copies of G,,_;. Note that G; = K; and G5 = Ps, which has secure-
domination number 2. In Figure 1 are G5 and G4, with a secure-dominating
set of vertices indicated by blacking the members of the set. (In fact, two
different minimum secure-dominating sets for G5 are displayed, one of them
in two Glg’s in the G4.) Three vertices of G5 are labeled for future reference.

Since v,(H) > I'IY_§2£M] for any graph H, this picture shows that v,(G4) =
8 and v;(G3) = 4.

We believe that
G G

lim ——————%( n) = lim —-——————%( )

n-co |V(Gn)| n—+oco 27 — 1
exists and is greater that 3 — somewhere in the interval (3, 2%) — but we
have not been able to prove this, nor even the corresponding claim for
the subsequence Gy,,n = 1,2,.... However, we can achieve the goal of
showing that limsup llvég%[ > % without estimating v,(G,,), by using the

G is a tree
properties of G3 alone.
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FiGure 2. H,

Let H,, denote the graph obtained by making the root vertices of n Ga’s
the vertices of a path. See Figure 2. :

Theorem 1. ~,(H,) = 4n

Proof. Let the vertices along the path in the definition of H,, be Uy .o -, Uy,
let the G5 of which w; is the root be denoted G and let v; and w; play
the roles in G that v and w play in Figure 1.

By copying the secure-dominating set depicted in Figure 1 (G3) on each
G, we obtain a secure-dominating set in H,, with 4n vertices. To finish
the proof, it suffices to show that if S C V(H,) is a secure-dominating set
in Hy, then [SNV(G®W)| > 4,i=1,...,n.

Suppose that S is such a set, and let S; = SN V(G®W). If S, is secure
and dominating in G, then |S;| > v, (Gs3) = 4.

Cose 1 u; ¢ S:
Since S; cannot be attacked from outside G® | in this case, S; must be
secure in G, but not necessarily dominating. However, S; is dominating
in G® — y;. The only way S; can fail to be dominating in G® is if
v, w; ¢ S;. But if this were so0, then S; could be dominating in G — y;
only if all 4 leafs (terminal vertices) in G are in S;. Thus, in any case,
1G] > 4.
Case 2 u; € S:
In this case S; is dominating in G¥, but may fail to be secure in G®.
However, if |S;| < 3 and u; € 5;, then S, is dominating in G® only if S; =
{wi, vi,wi}, in which case X' = {v;,w;} has 4 attackers and [Ny, (XINS| =
3, contradicting the security of S. Consequently, |S;| > 4.

O

Let X, denote the graph obtained by making each vertex on a path
P =~ P, adjacent to one vertex of a Cs. See Figure 3.

Theorem 2. v,(X,) = 4n.
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Ficure 3. X,

Proof. Let the vertices along the path P be 1, ..., z, and let the neighbor
of z; on the Cg allotted to z; be y;. Let H; be the subgraph of X,, induced
by z; with the vertices of the Cs containing y;. -

The set made up of zy, ..., T, together with the 3 vertices furthest from
Yi in H;, for each i = 1,...,n, is clearly secure and dominating, with
4n vertices. So v,(X.) < 4n. Suppose that S C V(X,) is secure and
dominating in X,,. The proof is over if we show that |SNV(H,)| >4, i =
L...,n.

Let S; = SN V(H;) and suppose that |S;| < 3 for some 1.
Case 1 x; ¢ S;: )
Then S; must be both dominating and secure in the 6-cycle H; — x;. But
it is straightforward to see that this is impossible for a set of 3 or fewer
vertices.
Case 2 x; € S;:
Then [S;\{z:}| <2, and 5; is dominating in H;. The only ways to achieve
the latter by picking 2 vertices of Cs =~ H; — z; to go with z; in forming
Si involve choosing two vertices on the cycle that are not adjacent. But
then S cannot be secure, because at least one of these vertices is of degree
2 with both of its neighbors not in §. 0

3. Problems remaining
(1) Find limsup 32%(;%’112 We are pretty sure that this limsup is a lim,
n o0
but we could be wrong.
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(2) Find limsup BE) for G € {{trees}, ted hs}}. We ex-
) Gegp }Véﬁ)% {{trees}, {connected grap s}}. We ex

pect that, at least, improvements on our lower estimate of é will
be found.

(8) Does there exist a connected graph G on more than one vertex such
that ——g—lﬂ,’(g)’ > 27
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